Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Neuropeptides ; 101: 102336, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37290176

RESUMEN

Sleep deprivation alters orexinergic neuronal activity in the lateral hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. Cannabinoid receptor (CBR) expression in this area is involved in modulating the function of orexin neurons. In this study, we investigated the effects of endocannabinoid anandamide (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (p < 0.01), Electrical activity of orexin neurons (p < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (p < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (p < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the CB1 receptor in the LH in sleep deprived rats.


Asunto(s)
Área Hipotalámica Lateral , Privación de Sueño , Ratas , Masculino , Animales , Orexinas/metabolismo , Área Hipotalámica Lateral/metabolismo , Privación de Sueño/metabolismo , Endocannabinoides/metabolismo , Receptor Cannabinoide CB1/metabolismo , Ratas Wistar , Interleucina-4/metabolismo , Interleucina-4/farmacología , Interleucina-6/metabolismo , Interleucina-6/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Ingestión de Alimentos/fisiología , ARN Mensajero/metabolismo , Receptores de Orexina/metabolismo
2.
Bioorg Chem ; 133: 106377, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36731294

RESUMEN

Cannabinoid receptors (CBs), including CB1 and CB2, are the key components of a lipid signaling endocannabinoid system (ECS). Development of synthetic cannabinoids has been attractive to modulate ECS functions. CB1 and CB2 are structurally closely related subtypes but with distinct functions. While most efforts focus on the development of selective ligands for single subtype to circumvent the undesired off-target effect, Yin-Yang ligands with opposite pharmacological activities simultaneously on two subtypes, offer unique therapeutic potential. Herein we report the development of a new Yin-Yang ligand which functions as an antagonist for CB1 and concurrently an agonist for CB2. We found that in the pyrazole-cored scaffold, the arm of N1-phenyl group could be a switch, modification of which yielded various ligands with distinct activities. As such, the ortho-morpholine substitution exerted the desired Yin-Yang bifunctionality which, based on the docking study and molecular dynamic simulation, was proposed to be resulted from the hydrogen bonding with S173 and S285 in CB1 and CB2, respectively. Our results demonstrated the feasibility of structure guided ligand evolution for challenging Yin-Yang ligand.


Asunto(s)
Cannabinoides , Pirazoles , Receptor Cannabinoide CB1 , Cannabinoides/farmacología , Cannabinoides/química , Endocannabinoides , Ligandos , Pirazoles/química , Pirazoles/farmacología , Receptor Cannabinoide CB1/química , Receptor Cannabinoide CB1/metabolismo , Receptores de Cannabinoides/química , Receptores de Cannabinoides/metabolismo , Yin-Yang
3.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499556

RESUMEN

Recurrent Binge Eating (BE) episodes characterize several eating disorders. Here, we attempted to reassemble a condition closer to BE disorder, and we analyzed whether recurrent episodes might evoke molecular alterations in the hypothalamus of rats. The hypothalamus is a brain region which is sensitive to stress and relevant in motivated behaviors, such as food intake. A well-characterized animal model of BE, in which a history of intermittent food restriction and stress induce binge-like palatable food consumption, was used to analyze the transcriptional regulation of the endocannabinoid system (ECS). We detected, in rats showing the BE behavior, an up-regulated gene expression of cannabinoid type-1 receptor (CB1), sn-1-specific diacylglycerol lipase, as well as fatty acid amide hydrolase (Faah) and monoacylglycerol lipase. A selective reduction in DNA methylation was also observed at the promoter of Faah, which is consistent with the changes in the gene expression. Moreover, BE behavior in rats was associated with an increase in anandamide (AEA) levels. Our findings support the relevant role of the ECS in the regulation of food intake in rats subjected to repeated BE episodes, and, in particular, on AEA signaling, acting via CB1 and FAAH modulation. Notably, the epigenetic regulation of the Faah gene might suggest this enzyme as a possible target for developing new therapeutical approaches.


Asunto(s)
Trastorno por Atracón , Ratas , Femenino , Animales , Trastorno por Atracón/genética , Epigénesis Genética , Endocannabinoides/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Receptores de Cannabinoides/metabolismo , Hipotálamo/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Ingestión de Alimentos
4.
Nutrition ; 103-104: 111742, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35908495

RESUMEN

OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is one of the major causes of liver disease worldwide. Although various molecular mechanisms are effective in the initiation and progression, the exact pathway is not completely clarified. Recent findings suggest a role of the endocannabinoid system in the pathology of NAFLD. Inulin has been shown to be beneficial for NAFLD. With the first study, we investigated the effects of inulin supplementation on NAFLD via the endocannabinoid system in Wistar rats fed high-fat diet. METHODS: Male Wistar rats were fed with control, control plus inulin, high-fat, and high-fat plus inulin diets for 12 wk. Inulin was added to diets in 15% weight/weight. Biochemical parameters, insulin, and adiponectin levels were determined. Steatosis, lobular inflammation, and total NAFLD activity scores (NAS) were determined by histopathological analysis and by magnetic resonance imaging. Anandamide and 2-arachidonylglycerol levels were measured by the liquid chromatography-tandem mass spectrometry method. Gene expression levels were determined by the quantitative polymerase chain reaction method. RESULTS: Our results showed that the NAS of the high-fat diet was 4.16 ± 0.30, which was significantly higher than that of the other groups. Inulin decreased Homeostasis model assessment measuring insulin resistance (HOMA-IR), serum triacylglycerol, total cholesterol, and Aspartate aminotransferaselevels. Inulin also significantly decreased Cannabinoid receptor-1 and Patatin-like phospholipase-3 gene expressions in the liver. The 2-arachidonylglycerol levels in the liver were lower in the inulin-added groups. These effects of inulin were associated with NAS. CONCLUSIONS: Inulin prevented the development of NAFLD, possibly by affecting the expression of genes involved in the pathogenesis of NAFLD in the liver via endocannabinoids. The results of this study show that inulin may be a promising molecule in the treatment/prevention of NAFLD.


Asunto(s)
Aciltransferasas , Enfermedad del Hígado Graso no Alcohólico , Fosfolipasas A2 Calcio-Independiente , Receptor Cannabinoide CB1 , Animales , Masculino , Ratas , Dieta Alta en Grasa/efectos adversos , Endocannabinoides/farmacología , Inulina/farmacología , Inulina/uso terapéutico , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/genética , Ratas Wistar , Receptor Cannabinoide CB1/metabolismo , Fosfolipasas A2 Calcio-Independiente/genética , Aciltransferasas/genética
5.
Br J Anaesth ; 128(1): 159-173, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34844727

RESUMEN

BACKGROUND: Cannabinoid type-1 receptors (CB1Rs) are expressed in primary sensory neurones, but their role in pain modulation remains unclear. METHODS: We produced Pirt-CB1R conditional knockout (cKO) mice to delete CB1Rs in primary sensory neurones selectively, and used behavioural, pharmacological, and electrophysiological approaches to examine the influence of peripheral CB1R signalling on nociceptive and inflammatory pain. RESULTS: Conditional knockout of Pirt-CB1R did not alter mechanical or heat nociceptive thresholds, complete Freund adjuvant-induced inflammation, or heat hyperalgesia in vivo. The intrinsic membrane properties of small-diameter dorsal root ganglion neurones were also comparable between cKO and wild-type mice. Systemic administration of CB-13, a peripherally restricted CB1/CB2R dual agonist (5 mg kg-1), inhibited nociceptive pain and complete Freund adjuvant-induced inflammatory pain. These effects of CB-13 were diminished in Pirt-CB1R cKO mice. In small-diameter neurones from wild-type mice, CB-13 concentration-dependently inhibited high-voltage activated calcium current (HVA-ICa) and induced a rightward shift of the channel open probability curve. The effects of CB-13 were significantly attenuated by AM6545 (a CB1R antagonist) and Pirt-CB1R cKO. CONCLUSION: CB1R signalling in primary sensory neurones did not inhibit nociceptive or inflammatory pain, or the intrinsic excitability of nociceptive neurones. However, peripheral CB1Rs are important for the analgesic effects of systemically administered CB-13. In addition, HVA-ICa inhibition appears to be a key ionic mechanism for CB-13-induced pain inhibition. Thus, peripherally restricted CB1R agonists could have utility for pain treatment.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Naftalenos/farmacología , Dolor/tratamiento farmacológico , Receptor Cannabinoide CB1/agonistas , Analgésicos/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfolinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Dolor/fisiopatología , Pirazoles/farmacología , Receptor Cannabinoide CB1/metabolismo
6.
Genes Brain Behav ; 20(8): e12775, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34672092

RESUMEN

The endocannabinoid system is an important regulator of the hormonal and behavioral stress responses, which critically involve corticotropin-releasing factor (CRF) and its receptors. While it has been shown that CRF and the cannabinoid type 1 (CB1) receptor are co-localized in several brain regions, the physiological relevance of this co-expression remains unclear. Using double in situ hybridization, we confirmed co-localization in the piriform cortex, the lateral hypothalamic area, the paraventricular nucleus, and the Barrington's nucleus, albeit at low levels. To study the behavioral and physiological implications of this co-expression, we generated a conditional knockout mouse line that selectively lacks the expression of CB1 receptors in CRF neurons. We found no effects on fear and anxiety-related behaviors under basal conditions nor after a traumatic experience. Additionally, plasma corticosterone levels were unaffected at baseline and after restraint stress. Only acoustic startle responses were significantly enhanced in male, but not female, knockout mice. Taken together, the consequences of depleting CB1 in CRF-positive neurons caused a confined hyperarousal phenotype in a sex-dependent manner. The current results suggest that the important interplay between the central endocannabinoid and CRF systems in regulating the organism's stress response is predominantly taking place at the level of CRF receptor-expressing neurons.


Asunto(s)
Receptor Cannabinoide CB1/metabolismo , Reflejo de Sobresalto/genética , Estimulación Acústica , Animales , Corticosterona/sangre , Hormona Liberadora de Corticotropina/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/metabolismo , Corteza Piriforme/citología , Corteza Piriforme/metabolismo , Receptor Cannabinoide CB1/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Sexo
7.
Comput Biol Chem ; 95: 107590, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34700256

RESUMEN

BACKGROUND: Cannabis sativa has been attributed to different pharmacological properties. A number of secondary metabolites such as tetrahydrocannabinol (THC), cannabinol (CBD), and different analogs, with highly promising biological activity on CB1 and CB2 receptors, have been identified. METHODS: Thus, this study aimed was to evaluate the activity of THC, CBD, and their analogs using molecular docking and molecular dynamics simulations (MD) methods. Initially, the molecules (ligands) were selected by bioinformatics searches in databases. Subsequently, CB1 and CB2 receptors were retrieved from the protein data bank database. Afterward, each receptor and its ligands were optimized to perform molecular docking. Then, MD Simulation was performed with the most stable ligand-receptor complexes. Finally, the Molecular Mechanics-Generalized Born Surface Area (MM-PBSA) method was applied to analyze the binding free energy between ligands and cannabinoid receptors. RESULTS: The results obtained showed that ligand LS-61176 presented the best affinity in the molecular docking analysis. Also, this analog could be a CB1 negative allosteric modulator like CBD and probably an agonist in CB2 like THC and CBD according to their dynamic behavior in silico. The possibility of having a THC and a CBD analog (LS-61176) as a promising molecule for experimental evaluation since it could have no central side-effects on CB1 and have effects of CB2 useful in pain, inflammation, and some immunological disorders. Docking results were validate using ROC curve for both cannabinoids receptor where AUC for CB1 receptor was 0.894±0.024, and for CB2 receptor AUC was 0.832±0032, indicating good affinity prediction.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/antagonistas & inhibidores , Antagonistas de Receptores de Cannabinoides/química , Cannabinoides/química , Evaluación Preclínica de Medicamentos , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
8.
Neuropharmacology ; 195: 108626, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34116110

RESUMEN

Cannabis has been used for hundreds of years, with its ability to dampen feelings of anxiety often reported as a primary reason for use. Only recently has the specific role cannabinoids play in anxiety been thoroughly investigated. Here we discuss the body of evidence describing how endocannabinoids and exogenous cannabinoids are capable of regulating the generation and termination of anxiety states. Disruption of the endogenous cannabinoid (eCB) system following genetic manipulation, pharmacological intervention or stress exposure reliably leads to the generation of an anxiety state. On the other hand, upregulation of eCB signaling is capable of alleviating anxiety-like behaviors in multiple paradigms. When considering exogenous cannabinoid administration, cannabinoid receptor 1 (CB1) agonists have a biphasic, dose-dependent effect on anxiety such that low doses are anxiolytic while high doses are anxiogenic, a phenomenon that is evident in both rodent models and humans. Translational studies investigating a loss of function mutation in the gene for fatty acid amide hydrolase, the enzyme responsible for metabolizing AEA, have also shown that AEA signaling regulates anxiety in humans. Taken together, evidence reviewed here has outlined a convincing argument for cannabinoids being powerful regulators of both the manifestation and amelioration of anxiety symptoms, and highlights the therapeutic potential of targeting the eCB system for the development of novel classes of anxiolytics. This article is part of the special issue on 'Cannabinoids'.


Asunto(s)
Ansiedad/metabolismo , Moduladores de Receptores de Cannabinoides/uso terapéutico , Cannabinoides/uso terapéutico , Endocannabinoides/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Ansiedad/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Moduladores de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Humanos
9.
Artículo en Inglés | MEDLINE | ID: mdl-34144188

RESUMEN

Hypothalamic neural circuits play a critical role in integrating peripheral signals and conveying information about energy and nutrient status. We detected cannabinoid receptor type 1 (CB1) distribution in the hypothalamus, liver, duodenum, jejunum, and ileum among 7- and 35-day-old broilers. The effects of dexamethasone (DEX) on CB1 gene expression were evaluated by in vitro and in vivo experiments on glucocorticoid receptor (GR) and adenosine monophosphate-activated protein kinase (AMPK) in the hypothalamus of broilers. In vitro, hypothalamic cells from 17-day-old broiler embryos were incubated with either 0.1% dimethyl sulfoxide or DEX (100 nmol/mL) for 1 h. In the in vivo study, 28-day-old broilers were injected with DEX for 24 h or 72 h. Results showed that CB1 was mainly expressed in the hypothalamus, and 72 h DEX treatment increased the expression. One-day treatment of broilers with DEX did not change the hypothalamic CB1 gene expression. Moreover, DEX treatment for 24 h and 72 h increased the mRNA level of hypothalamic AMPKα2 and GR. However, no differences were observed on the gene expression of CB1, GR, and AMPKα2 in hypothalamic cells with DEX-treated for 1 h. In conclusion, CB1 is mainly expressed in the hypothalamus of broilers; 72-h DEX exposure can regulate the CB1 system and AMPK signaling pathway of the broiler hypothalamus.


Asunto(s)
Dexametasona/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Receptor Cannabinoide CB1/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Pollos , Glucocorticoides/metabolismo , Masculino , ARN Mensajero/metabolismo , Receptores de Glucocorticoides/genética , Transducción de Señal
10.
Artículo en Inglés | MEDLINE | ID: mdl-33741446

RESUMEN

More than 500 molecules have been identified as components of Cannabis sativa (C. sativa), of which the most studied is Δ9-tetrahydrocannabinol (Δ9-THC). Several studies have suggested that Δ9-THC exerts diverse biological effects, ranging from fragmentation of DNA to behavioral disruptions. Currently, it is accepted that most of the pharmacological properties of Δ9-THC engage the activation of the cannabinoid receptors, named CB1 and CB2. Interestingly, multiple pieces of evidence have suggested that the cannabinoid receptors play an active role in the modulation of several diseases leading to the design of synthetic cannabinoid-like compounds. Advances in the development of synthetic CB1 cannabinoid receptor selective agonists as therapeutical approaches are, however, limited. This review focuses on available evidence searched in PubMed regarding the synthetic CB1 cannabinoid receptor selective agonists such as AM-1235, arachidonyl-2' chloroethylamide (ACEA), CP 50,556-1 (Levonantradol), CP-55,940, HU-210, JWH-007, JWH-018, JWH-200 (WIN 55,225), methanandamide, nabilone, O-1812, UR-144, WIN 55,212-2, nabiximols, and dronabinol. Indeed, it would be ambitious to describe all available evidence related to the synthetic CB1 cannabinoid receptor selective agonists. However, and despite the positive evidence on the positive results of using these compounds in experimental models of health disturbances and preclinical trials, we discuss evidence in regards some concerns due to side effects.


Asunto(s)
Agonistas de Receptores de Cannabinoides/síntesis química , Agonistas de Receptores de Cannabinoides/uso terapéutico , Sustancias Controladas/síntesis química , Receptor Cannabinoide CB1/agonistas , Analgésicos/síntesis química , Analgésicos/uso terapéutico , Animales , Ansiolíticos/síntesis química , Ansiolíticos/uso terapéutico , Cannabinoides/síntesis química , Cannabinoides/uso terapéutico , Sustancias Controladas/administración & dosificación , Ciclohexanoles/síntesis química , Ciclohexanoles/uso terapéutico , Dronabinol/análogos & derivados , Dronabinol/síntesis química , Dronabinol/uso terapéutico , Humanos , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/metabolismo , Dolor/tratamiento farmacológico , Dolor/metabolismo , Fenantridinas/síntesis química , Fenantridinas/uso terapéutico , Receptor Cannabinoide CB1/metabolismo
11.
J Cereb Blood Flow Metab ; 41(9): 2295-2310, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33663269

RESUMEN

There are no effective treatments for stroke. The activation of endogenous protective mechanisms is a promising therapeutic approach, which evokes the intrinsic ability of the brain to protect itself. Accumulated evidence strongly suggests that electroacupuncture (EA) pretreatment induces rapid tolerance to cerebral ischemia. With regard to mechanisms underlying ischemic tolerance induced by EA, many molecules and signaling pathways are involved, such as the endocannabinoid system, although the exact mechanisms have not been fully elucidated. In the current study, we employed mutant mice, neuropharmacology, microdialysis, and virus transfection techniques in a middle cerebral artery occlusion (MCAO) model to explore the cell-specific and brain region-specific mechanisms of EA-induced neuroprotection. EA pretreatment resulted in increased ambient endocannabinoid (eCB) levels and subsequent activation of ischemic penumbral astroglial cannabinoid type 1 receptors (CB1R) which led to moderate upregulation of extracellular glutamate that protected neurons from cerebral ischemic injury. These findings provide a novel cellular mechanism of EA and a potential therapeutic target for ischemic stroke.


Asunto(s)
Astrocitos/metabolismo , Isquemia Encefálica/fisiopatología , Electroacupuntura/métodos , Receptor Cannabinoide CB1/metabolismo , Animales , Masculino , Ratones
12.
Clin Sci (Lond) ; 135(1): 185-200, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33393630

RESUMEN

Obesity is believed to be associated with a dysregulated endocannabinoid system which may reflect enhanced inflammation. However, reports of this in human white adipose tissue (WAT) are limited and inconclusive. Marine long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have anti-inflammatory actions and therefore may improve obesity-associated adipose tissue inflammation. Therefore, fatty acid (FA) concentrations, endocannabinoid concentrations, and gene expression were assessed in subcutaneous WAT (scWAT) biopsies from healthy normal weight individuals (BMI 18.5-25 kg/m2) and individuals living with metabolically healthy obesity (BMI 30-40 kg/m2) prior to and following a 12-week intervention with 3 g fish oil/day (1.1 g eicosapentaenoic acid (EPA) + 0.8 g DHA) or 3 g corn oil/day (placebo). WAT from individuals living with metabolically healthy obesity had higher n-6 PUFAs and EPA, higher concentrations of two endocannabinoids (anandamide (AEA) and eicosapentaenoyl ethanolamide (EPEA)), higher expression of phospholipase A2 Group IID (PLA2G2D) and phospholipase A2 Group IVA (PLA2G4A), and lower expression of CNR1. In response to fish oil intervention, WAT EPA increased to a similar extent in both BMI groups, and WAT DHA increased by a greater extent in normal weight individuals. WAT EPEA and docosahexaenoyl ethanolamide (DHEA) increased in normal weight individuals only and WAT 2-arachidonyl glycerol (2-AG) decreased in individuals living with metabolically healthy obesity only. Altered WAT fatty acid, endocannabinoid, and gene expression profiles in metabolically healthy obesity at baseline may be linked. WAT incorporates n-3 PUFAs when their intake is increased which affects the endocannabinoid system; however, effects appear greater in normal weight individuals than in those living with metabolically healthy obesity.


Asunto(s)
Suplementos Dietéticos , Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Endocannabinoides/metabolismo , Obesidad Metabólica Benigna/tratamiento farmacológico , Grasa Subcutánea/efectos de los fármacos , Adolescente , Adulto , Ácidos Araquidónicos/metabolismo , Método Doble Ciego , Combinación de Medicamentos , Inglaterra , Femenino , Fosfolipasas A2 Grupo II/metabolismo , Fosfolipasas A2 Grupo IV/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Obesidad Metabólica Benigna/diagnóstico , Obesidad Metabólica Benigna/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Grasa Subcutánea/metabolismo , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
13.
Pharmacol Biochem Behav ; 203: 173119, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33508249

RESUMEN

The endocannabinoid system, which spans the central and peripheral nervous systems and regulates many biologic processes, is an important target for probe discovery and medications development. Whereas the earliest endocannabinoid receptor probes were derivatives of the non-selective phytocannabinoids isolated from Cannabis species, modern drug discovery techniques have expanded the definitions of what constitutes a CB1R or CB2R cannabinoid receptor ligand. This review highlights recent advances in synthetic cannabinoid receptor chemistry and pharmacology. We provide examples of new CB1R- and CB2R-selective probes, and discuss rational approaches to the design of peripherally-restricted agents. We also describe structural classes of positive- and negative allosteric modulators (PAMs and NAMs) of CB1R and CB2R. Finally, we introduce new opportunities for cannabinoid receptor probe development that have emerged in recent years, including biased agonists that may lead to medications lacking adverse effects.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Extractos Vegetales/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptores Artificiales/agonistas , Receptores Artificiales/antagonistas & inhibidores , Regulación Alostérica , Sitio Alostérico , Animales , Cannabis/química , Descubrimiento de Drogas/métodos , Endocannabinoides/metabolismo , Humanos , Ligandos , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
14.
Front Immunol ; 12: 790803, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003109

RESUMEN

Inflammatory bowel disease (IBD) is a general term used to describe a group of chronic inflammatory conditions of the gastrointestinal tract of unknown etiology, including two primary forms: Crohn's disease (CD) and ulcerative colitis (UC). The endocannabinoid system (ECS) plays an important role in modulating many physiological processes including intestinal homeostasis, modulation of gastrointestinal motility, visceral sensation, or immunomodulation of inflammation in IBD. It consists of cannabinoid receptors (CB1 and CB2), transporters for cellular uptake of endocannabinoid ligands, endogenous bioactive lipids (Anandamide and 2-arachidonoylglycerol), and the enzymes responsible for their synthesis and degradation (fatty acid amide hydrolase and monoacylglycerol lipase), the manipulation of which through agonists and antagonists of the system, shows a potential therapeutic role for ECS in inflammatory bowel disease. This review summarizes the role of ECS components on intestinal inflammation, suggesting the advantages of cannabinoid-based therapies in inflammatory bowel disease.


Asunto(s)
Antiinflamatorios/farmacología , Agonistas de Receptores de Cannabinoides/uso terapéutico , Antagonistas de Receptores de Cannabinoides/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Enfermedad de Crohn/tratamiento farmacológico , Animales , Antiinflamatorios/uso terapéutico , Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Endocannabinoides/agonistas , Endocannabinoides/antagonistas & inhibidores , Endocannabinoides/metabolismo , Motilidad Gastrointestinal/efectos de los fármacos , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Ensayos Clínicos Controlados Aleatorios como Asunto , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Resultado del Tratamiento
15.
Nutr Neurosci ; 24(8): 583-600, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31637966

RESUMEN

Memory and GABAergic activity in the hippocampus of stressed rats improve after n-3 polyunsaturated fatty acid (PUFA) supplementation. On the other hand, cannabinoid receptor type 1 (CB1) strongly regulates inhibitory neurotransmission in the hippocampus. Speculation about a possible relation between stress, endocannabinoids, and PUFAs. Here, we examined whether the effects of PUFAs on memory of chronically stressed rats depends on pharmacological manipulation of CB1 receptors. Male Sprague-Dawley rats were orally supplemented with n-3 (fish oil) or n-6 (primrose oil) PUFAs during chronic restraint stress (CRS) protocol (6 h/day; 21 days). First, we studied if the expression of CB1 receptors in the hippocampus may be affected by CRS and PUFAs supplementation by real-time PCR and immunofluorescence. CRS up-regulated the CB1 expression compared with the non-stressed rats, while only n-3 PUFAs countered this effect. Memory was evaluated in the Morris water maze. Stressed rats were co-treated with PUFAs and/or modulators of CB1 receptor (AM251, antagonist, 0.3 mg/kg/day; WIN55,212-2, agonist, 0.5 mg/kg/day) by intraperitoneal injections. Memory improved in the stressed rats that were treated with AM251 and/or n-3 PUFAs. Supplementation with n-6 PUFAs did not affect memory of stressed rats, but co-treatment with AM251 improved it, while co-treatment with WIN55,212-2 did not affect memory. Our results demonstrate that activity of the CB1 receptors may modulate the effects of PUFAs on memory of stressed rats. This study suggests that endocannabinoids and PUFAs can both become a singular system by being self-regulated in limbic areas, so they control the effects of stress on the brain.


Asunto(s)
Ácidos Grasos Insaturados/administración & dosificación , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Memoria/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología , Animales , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratas Sprague-Dawley
16.
J Pain ; 22(3): 300-312, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33069869

RESUMEN

Analgesic tolerance to opioids contributes to the opioid crisis by increasing the quantity of opioids prescribed and consumed. Thus, there is a need to develop non-opioid-based pain-relieving regimens as well as strategies to circumvent opioid tolerance. Previously, we revealed a non-opioid analgesic mechanism induced by median nerve electrostimulation at the overlaying PC6 (Neiguan) acupoint (MNS-PC6). Here, we further examined the efficacy of MNS-PC6 in morphine-tolerant mice with neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve. Daily treatments of MNS-PC6 (2 Hz, 2 mA), but not electrostimulation at a nonmedian nerve-innervated location, for a week post-CCI induction significantly suppressed established mechanical allodynia in CCI-mice in an orexin-1 (OX1) and cannabinoid-1 (CB1) receptor-dependent fashion. This antiallodynic effect induced by repeated MNS-PC6 was comparable to that induced by repeated gabapentin (50 mg/kg, i.p.) or single morphine (10 mg/kg, i.p.) treatments, but without tolerance, unlike repeated morphine-induced analgesia. Furthermore, single and repeated MNS-PC6 treatments remained fully effective in morphine-tolerant CCI-mice, also in an OX1 and CB1 receptor-dependent fashion. In CCI-mice receiving escalating doses of morphine for 21 days (10, 20 and 50 mg/kg), single and repeated MNS-PC6 treatments remained fully effective. Therefore, repeated MNS-PC6 treatments induce analgesia without tolerance, and retain efficacy in opioid-tolerant mice via a mechanism that involves OX1 and CB1 receptors. This study suggests that MNS-PC6 is an alternative pain management strategy that maybe useful for combatting the opioid epidemic, and opioid-tolerant patients receiving palliative care. PERSPECTIVE: Median nerve stimulation relieves neuropathic pain in mice without tolerance and retains efficacy even in mice with analgesic tolerance to escalating doses of morphine, via an opioid-independent, orexin-endocannabinoid-mediated mechanism. This study provides a proof of concept for utilizing peripheral nerve stimulating devices for pain management in opioid-tolerant patients.


Asunto(s)
Analgesia , Analgésicos Opioides/farmacología , Tolerancia a Medicamentos , Terapia por Estimulación Eléctrica , Nervio Mediano , Morfina/farmacología , Neuralgia/terapia , Receptores de Orexina/metabolismo , Manejo del Dolor , Receptor Cannabinoide CB1/metabolismo , Puntos de Acupuntura , Analgésicos Opioides/administración & dosificación , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/administración & dosificación , Prueba de Estudio Conceptual , Nervio Ciático/lesiones
17.
Neurochem Int ; 142: 104907, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33220388

RESUMEN

Cannabinoids have been shown to protect the retina from ischemic/excitotoxic insults. The aim of the present study was to investigate the neuroprotective and anti-inflammatory properties of the synthetic cannabinoid (R)-WIN55,212-2 (CB1/CB2 receptor agonist) when administered acutely or subchronically in control and AMPA treated retinas. Sprague-Dawley rats were intravitreally administered (acutely) with vehicle or AMPA, in the absence or presence of (R)-WIN55,212-2 (10-7-10-4M) alone or in combination with AM251 [CB1 receptor antagonist/inverse agonist,10-4M] and AM630 (CB2 receptor antagonist,10-4M). In addition, AMPA was co-administered with the racemic (R,S)-WIN55,212 (10-4Μ). (R)-WIN55,212-2 was also administered subchronically (25,100 µg/kg,i.p.,4d) in control and AMPA treated rats. Immunohistochemical studies were performed using antibodies against the CB1R, and retinal markers for retinal neurons (brain nitric oxide synthetase, bNOS) and microglia (ionized calcium binding adaptor molecule 1, Iba1). ELISA assay was employed to assess TNFα levels in AMPA treated retinas. Intravitreal administration of (R)-WIN55,212-2 reversed the AMPA induced loss of bNOS expressing amacrine cells, an effect that was blocked by both AM251 and AM630. (R,S)WIN55,212 had no effect. (R)-WIN55,212-2 also reduced a) the AMPA induced activation of microglia, by activating CB2 receptors that were shown to be colocalized with Iba1+ reactive microglial cells, and b) TNFα levels in retina. (R)-WIN55,212-2 administered subchronically led to the downregulation of CB1 receptors at the high dose of 100 µg/kg(i.p.), and to the attenuation of the WIN55,212-2 induced neuroprotection of amacrine cells. At the same dose, (R)-WIN55,212-2 did not attenuate the AMPA induced increase in the number of reactive microglia cells, suggesting CB2 receptor downregulation under subchronic conditions. This study provides new findings regarding the role of CB1 and CB2 receptor activation by the synthetic cannabinoid (R)-WIN55,212-2, administered acutely or sub-chronically, on neuron viability and microglia activation in healthy and diseased retina.


Asunto(s)
Antiinflamatorios/administración & dosificación , Benzoxazinas/administración & dosificación , Morfolinas/administración & dosificación , Naftalenos/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Retina/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Femenino , Masculino , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas , Retina/efectos de los fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/toxicidad
18.
Sci Rep ; 10(1): 20405, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230154

RESUMEN

The Cannabis sativa plant contains more than 120 cannabinoids. With the exceptions of ∆9-tetrahydrocannabinol (∆9-THC) and cannabidiol (CBD), comparatively little is known about the pharmacology of the less-abundant plant-derived (phyto) cannabinoids. The best-studied transducers of cannabinoid-dependent effects are type 1 and type 2 cannabinoid receptors (CB1R, CB2R). Partial agonism of CB1R by ∆9-THC is known to bring about the 'high' associated with Cannabis use, as well as the pain-, appetite-, and anxiety-modulating effects that are potentially therapeutic. CB2R activation by certain cannabinoids has been associated with anti-inflammatory activities. We assessed the activity of 8 phytocannabinoids at human CB1R, and CB2R in Chinese hamster ovary (CHO) cells stably expressing these receptors and in C57BL/6 mice in an attempt to better understand their pharmacodynamics. Specifically, ∆9-THC, ∆9-tetrahydrocannabinolic acid (∆9-THCa), ∆9-tetrahydrocannabivarin (THCV), CBD, cannabidiolic acid (CBDa), cannabidivarin (CBDV), cannabigerol (CBG), and cannabichromene (CBC) were evaluated. Compounds were assessed for their affinity to receptors, ability to inhibit cAMP accumulation, ßarrestin2 recruitment, receptor selectivity, and ligand bias in cell culture; and cataleptic, hypothermic, anti-nociceptive, hypolocomotive, and anxiolytic effects in mice. Our data reveal partial agonist activity for many phytocannabinoids tested at CB1R and/or CB2R, as well as in vivo responses often associated with activation of CB1R. These data build on the growing body of literature showing cannabinoid receptor-dependent pharmacology for these less-abundant phytocannabinoids and are critical in understanding the complex and interactive pharmacology of Cannabis-derived molecules.


Asunto(s)
Analgésicos/farmacología , Ansiolíticos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Cannabis/química , Psicotrópicos/farmacología , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/genética , Analgésicos/aislamiento & purificación , Animales , Ansiolíticos/aislamiento & purificación , Células CHO , Cannabidiol/aislamiento & purificación , Cannabidiol/farmacología , Agonistas de Receptores de Cannabinoides/aislamiento & purificación , Cannabinoides/aislamiento & purificación , Cannabinoides/farmacología , Cricetulus , Dronabinol/análogos & derivados , Dronabinol/aislamiento & purificación , Dronabinol/farmacología , Expresión Génica , Humanos , Ratones Endogámicos C57BL , Extractos Vegetales/química , Psicotrópicos/aislamiento & purificación , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/metabolismo , Transgenes , Arrestina beta 2/genética , Arrestina beta 2/metabolismo
19.
Inflammopharmacology ; 28(6): 1567-1577, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32935246

RESUMEN

Arbutus andrachne L. is a medicinal plant that grows in Jordan and has many valuable effects. In the present study, the anti-nociceptive effect of A. andrachne methanolic leaf extract was determined in mice using thermal and chemical tests. Our findings show that different doses of A. andrachne extract reduced the number of writhings significantly compared to control group. The leaf extract also reduced the time of paw licking in the early and late phases of formalin test. In all the conducted tests, 300 mg/kg body wt. was the best effective dose. A peroxisome proliferator-activated receptor alpha (PPARα) antagonist reversed the action of the plant extract in the early phase of formalin test while antagonists of the PPARα, PPAR gamma (PPARγ) and cannabinoid 1 (CB1) receptors were responsible for abolishing its effect in the late phase of this test. Also, the extract administration increased the latency time in hot plate and tail flick, an effect that was reversed by the antagonists of PPARγ, CB1 and transient receptor potential vanilloid 1 (TRPV1). No effect was noticed for α2-adrenergic receptor antagonist in the action of A. andrachne in any of the conducted tests in this study. Furthermore, analysis of the constituents in the methanolic leaf extract using liquid chromatography mass spectrometry (LCMS) showed that the extract is rich in compounds that have anti-nociceptive and/or anti-inflammatory effects such as arbutin, rutin, linalool, linoleic acid, gallic acid, lauric acid, myristic acid, hydroquinone, ß-sitosterol, ursolic acid, isoquercetin, quercetin, (+)-gallocatechin, kaempferol, α-tocopherol, myricetin 3-O-rhamnoside and catechin gallate. In conclusion, A. andrachne showed promising anti-nociceptive effects in thermal and chemical models of pain. These findings can open an avenue for natural pain relief.


Asunto(s)
Analgésicos/farmacología , Ericaceae/química , PPAR gamma/metabolismo , Dolor/tratamiento farmacológico , Dolor/metabolismo , Receptor Cannabinoide CB1/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Masculino , Metanol/química , Ratones , Ratones Endogámicos BALB C , Manejo del Dolor/métodos , Extractos Vegetales/farmacología , Hojas de la Planta/química
20.
Neurotox Res ; 38(4): 941-956, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32930995

RESUMEN

The endocannabinoid system has been associated with antiproliferative effects in several types of tumors through cannabinoid receptor-mediated cell death mechanisms. Oleamide (ODA) is a CB1/CB2 agonist associated with cell growth and migration by adhesion and/or ionic signals associated with Gap junctions. Antiproliferative mechanisms related to ODA remain unknown. In this work, we evaluated the effects of ODA on cell viability and morphological changes in a rat RG2 glioblastoma cell line and compared these effects with primary astrocyte cultures from 8-day postnatal rats. RG2 and primary astrocyte cultures were treated with ODA at increasing concentrations (25, 50, 100, and 200 µM) for different periods of time (12, 24, and 48 h). Changes in RG2 cell viability and morphology induced by ODA were assessed by viability/mitochondrial activity test and phase contrast microscopy, respectively. The ratios of necrotic and apoptotic cell death, and cell cycle alterations, were evaluated by flow cytometry. The roles of CB1 and CB2 receptors on ODA-induced changes were explored with specific receptor antagonists. ODA (100 µM) induced somatic damage, detachment of somatic bodies, cytoplasmic polarization, and somatic shrinkage in RG2 cells at 24 and 48 h. In contrast, primary astrocytes treated at the same ODA concentrations exhibited cell aggregation but not cell damage. ODA (100 µM) increased apoptotic cell death and cell arrest in the G1 phase at 24 h in the RG2 line. The effects induced by ODA on cell viability of RG2 cells were independent of CB1 and CB2 receptors or changes in intracellular calcium transient. Results of this novel study suggest that ODA exerts specific antiproliferative effects on RG2 glioblastoma cells through unconventional apoptotic mechanisms not involving canonical signals.


Asunto(s)
Muerte Celular/efectos de los fármacos , Glioblastoma/metabolismo , Ácidos Oléicos/toxicidad , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Animales , Muerte Celular/fisiología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Hipnóticos y Sedantes/toxicidad , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Endogámicas F344 , Ratas Wistar , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA